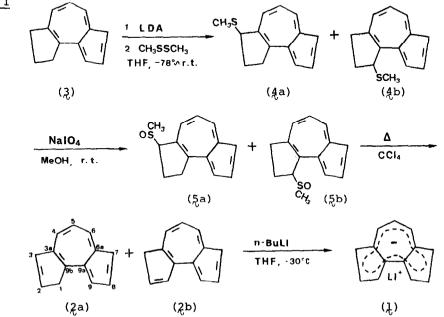

A REMARKABLY STABLE AROMATIC ANION, CYCLOPENT [e]AZULENIDE Zen-ichi Yoshida,^{*} Mitsuhiro Shibata, and Toyonari Sugimoto Department of Synthetic Chemistry, Kyoto University Yoshida, Kyoto 606, JAPAN


Summary: The titled anion was obtained by *n*-butyllithium treatment of a mixture of 1H- and 3H-cyclopent[e]azulenes in THF at -30°C. The ¹H- and ¹³C-nmr spectra indicate a considerably large peripheral π -conjugation due to an aromatic 14 π electron structure.

The π conjugation mode in anionic polycyclic systems is of considerable interest. For example, indenide is a more unstable anion compared with cyclopentadienide, where a benzene unit fusion to the latter disrupts 6π electron conjugation of cyclopentadienide ring and does not afford a peripheral 10π electron system.¹ In contrast with this, we now found that an azulene unit fusion to cyclopentadienide stabilizes a resultant anionic

spieces, cyclopent[e]azulenide (1) due to a peripheral 14π electron conjugation.

The conjugated acid of 1, cyclopent[e]azulene (2) was readily synthesized from 4,5-cyclopentenoazulene (3)² according to <u>Scheme 1</u>. Thus, 3 was treated with an equimolar lithium diisopropylamide, followed by reaction with dimethyl disulfide to give ca.1:1 mixture of 3'- and 5'-methylthio-substituted derivatives ((4a) and (4b))³ in 35% yield. Sodium metaperiodate oxidation of the mixture in methanol at r.t. afforded the corresponding sulfoxides $((5a) \text{ and } (5b))^3$ in almost quantitaive yield. Subsequent refluxing of the sulfoxides in CCl₄ and purification by column chromatography on alumina gave a mixture of 1H- and 3H-regioisomers of 2 ((2a) and (2b)) as a blue oil^{3,4} in 41% yield. The ratio of 2a and 2b in the mixture⁵ was Scheme 1

determined to be 3:7 from the 400 MHz ¹H-nmr spectrum (CDCl₃): $2a \delta 8.20$ (d, 1H, H₆, J=9.8Hz), 7.81 (t, 1H, H₈, J=3.7Hz), 7.60 (d, 1H, H₄, J=9.8Hz), 7.36 (d, 1H, H₇ or H₉, J=3.2Hz), 7.21 (d, 1H, H₇ or H₉, J=2.4Hz), 7.08 (t, 1H, H₅, J=9.8Hz), 6.80 (dt, 1H, H₃, J=5.6, 1.8Hz), 6.40 (dt, 1H, H₂, J=5.6, 2.2Hz) and 4.06 (t, 2H, H₁, J=2.0Hz); $2b \delta 8.29$ (d, 1H, H₆, J=9.5Hz), 7.83 (t, 1H, H₈, J=3.7Hz), 7.67 (d, 1H, H₄, J=9.8Hz), 7.53 (dtd, 1H, H₁, J=5.6, 1.8, 0.7Hz), 7.48 (d, 1H, H₇ or H₉, J=3.9Hz), 7.33 (d, 1H, H₇ or H₉, J=2.9Hz), 7.00 (t, 1H, H₅, J=9.8Hz), 6.95 (dt, 1H, H₂, J=5.6, 2.1Hz) and 3.73 (bs, 2H, H₃).

When 2 was reacted with an equimolar *n*-butyllithium in d_8 -THF at -30°C, the solution immediately turned from blue to reddish purple,⁶ whose ¹H- and ¹³C-nmr spectra showed the formation of 1. Under a thoroughly oxygen-free condition 1 remained unchanged even at r.t. for a long time (>1 week). <u>Table I</u> summarizes the nmr spectral data. Both the spectra revealed

Table 1. The H- and C-hmr spe	$\sqrt[5]{0}$
¹ H-nmr, δ (ppm)	¹³ C-nmr (ppm)
H _{1,9} 6.26 (bd, 2H, J=4.2Hz)	C _{1,9} ^{103.2}
H _{2,8} 6.69 (t, 2H, J=4.2Hz)	C _{2,8} 124.2
H _{3,7} 6.60 (bd, 2H, J=4.2Hz)	C _{3,7} 109.5
H _{4,6} 7.56 (d, 2H, J=9.6Hz)	C _{4,6} 133.3
H ₅ 6.05 (t, 1H, J=9.6Hz)	C ₅ 107.9, C _{9a,9b} 135.3, C _{3a,6a} 132.3

<u>Table I.</u> The ¹H- and ¹³C-nmr spectral data of 1 in d_8 -THF at -30°C.

no change also when measured at -65°C. Obviously, $\frac{1}{2}$ has a C_{2v} symmetry space group. The chemical shift values were compared with those of azulene (<u>Fig.</u> <u>1</u>).⁷ As seen from <u>Fig. 1a</u>, all the protons of $\frac{1}{2}$ shift by 0.2 \sim 1.1 ppm to a

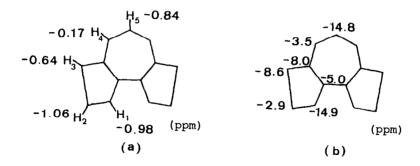
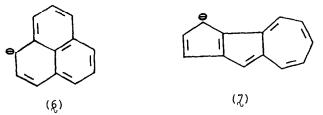



Fig. 1 The difference in 1 H- (a) and 13 C- (b) chemical shift values between 1 and azulene.

higher magnetic field as compared with those of azulene. In particular, the shifts of H_1 , H_2 and H_5 protons are remarkable. The tendency of shift to a higher magnetic field was also observed for all the carbons, among which the C_1 and C_5 atoms revealed a largest shift (*ca.* 15 ppm) (see <u>Fig. 1b</u>). These results indicate a considerably large π -conjugation on a peripheral framework due to an aromatic 14π electron structure. Further evidence can be provided by the appearance of diamagnetic ring current on $\frac{1}{2}$. Thus, when compared with the ¹H-chemical shift (δ 5.2 \sim 5.9) of phenalenide ($\frac{6}{2}$), ⁸ a non-aromatic, tricyclic anionic system with an isoelectronic structure to $\frac{1}{2}$, all the

protons of 1 appear in a fairly lower magnetic field ($\delta 6.1 \sim 7.6$).

An average pK_a of 2 was approximately estimated by reference to acidities of other compounds. By the reaction of 2 with an equimolar lithium cyclopentadienide in THF at $-78\,^{\circ}\text{C}$ was obtained a reddish purple solution as observed above. Treatment of the solution with an excess of methyl iodide afforded a mixture of 1- and 3- methyl-substituted derivatives of 2^9 in quantitative yield. While, the use of lithium malononitrile as a base revealed no formation of 1, thereby suggesting that an average pK_a of 2 ranges between 12 and 15, the respective pK_a 's of malononitrile and cyclopentadiene. It is noteworthy that the stability of $\frac{1}{2}$ presents a striking contrast to that of cyclopent[a]azuleneide (7), one of some isomers obtained by azulene unit fusion to cyclopentadienide, whose conjugated acid was estimated to have a very high pK_{a} value (ca. 22)¹⁰ comparable with those of phenalene and indene.

References and Notes

- 1. E. Buncel, "Carbanions: Mechanistic and Isotopic Aspects", Elsevier, Amsterdam (1975).
- 2. C. Jutz and E. Schweiger, Synthesis, 193 (1974).
- 3. All new compounds have been fully characterized by spectra (IR, NMR and
- Mass). Also, satisfactory elemental analyses were obtained. 4. The uv spectrum of the mixture is as follows: $\lambda_{max}^{CH_2C1_2}$ (log ϵ) 266 (4.28), 294(4.36), 340(3.43), 356(3.49), 370(3.34), 384(3.10), 580(2.63), 624(2.59), and 690 nm(2.18).
- 5. Before purification by the column chromatography, the ratio of 2a and 2b was ca. 1:1, while the value changed to 3:7 for the chromatographed 2 as a result of isomerization on alumina.
- 6. The reddish purple solution revealed a longest wave-length absorption band near 524 nm.
- 7. J.-R. Llinas, D. Roard, M. Derbesy, and E.-J. Vincent, Can. J. Chem., <u>53</u>, 2911 (1975).
- 8. H. Prinzbach, V. Freudenberger, and U. Scheidegger, Helv. Chim. Acta., 50, 1087 (1967).
- 9. From the 400 MHz nmr spectrum of the reaction mixture, the formation ratio of 1- and 3-methyl-substituted derivatives was determined to be ca. 6:1.
- 10. R. Fleischer, K. Hafner, J. Wildgruber, P. Hochmann, and R. Zahradnik, Tetrahedron, 24, 5943 (1968).

(Received in Japan 30 June 1983)

4588